The Classical Moment Problem as a Self-Adjoint Finite Difference Operator
نویسنده
چکیده
This is a comprehensive exposition of the classical moment problem using methods from the theory of finite difference operators. Among the advantages of this approach is that the Nevanlinna functions appear as elements of a transfer matrix and convergence of Padé approximants appears as the strong resolvent convergence of finite matrix approximations to a Jacobi matrix. As a bonus of this, we obtain new results on the convergence of certain Padé approximants for series of Hamburger. §
منابع مشابه
Self-adjoint difference operators and classical solutions to the Stieltjes-Wigert moment problem
Abstract. The Stieltjes–Wigert polynomials, which correspond to an indeterminate moment problem on the positive half-line, are eigenfunctions of a second order q-difference operator. We consider the orthogonality measures for which the difference operator is symmetric in the corresponding weighted L-spaces. Under some additional assumptions these measures are exactly the solutions to the q-Pear...
متن کاملOn Generalization of Sturm-Liouville Theory for Fractional Bessel Operator
In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...
متن کاملInverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملSelf-adjoint Difference Operators and Symmetric Al-salam–chihara Polynomials
The symmetric Al-Salam–Chihara polynomials for q > 1 are associated with an indeterminate moment problem. There is a self-adjoint second order difference operator on l(Z) to which these polynomials are eigenfunctions. We determine the spectral decomposition of this self-adjoint operator. This leads to a class of discrete orthogonality measures, which have been obtained previously by Christianse...
متن کاملSelf-adjoint Difference Operators and Symmetric Al-salam and Chihara Polynomials
The symmetric Al-Salam and Chihara polynomials for q > 1 are associated with an indeterminate moment problem. There is a self-adjoint second order difference operator on l(Z) to which these polynomials are eigenfunctions. We determine the spectral decomposition of this self-adjoint operator. This leads to a class of discrete orthogonality measures, which have been obtained previously by Christi...
متن کامل